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The low hanging fruit is gone.We are in
the world of complex nonlinear systems
(e.g. the human body...)
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Torcetrapib (Pfizer)

cholesterylester transfer protein (CETP)

Pfizer gives the first
dose of torcetrapib

to patients. NEJM Study
Phase Il trials begin Phase Il trials begin Pfizer halts
torcetrapib
1999 2000 2003 2004 2006

Timeline of Pfizer's Torcetrapib

Johns et al. On-and Off-Target Pharmacology of Torcetrapib: Current Understanding and
Implications for the Structure Activity Relationships (SAR), Discovery and Development
of Cholesteryl Ester-Transfer Protein (CETP) Inhibitors. Drugs (2012) 72 491-507
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Not long after torcetrapib
demise, Pfizer announced that it
was cutting 10,000 jobs.The

company spent $800 million
developing the drug.
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Several lines of evidence support a conclusion‘
that torcetrapib increases BP and enhances min-
eralocorticoid receptor activity through a mech-
anism(s) independent from inhibition of CETP.[>3-37]
As discussed in greater detail in section 3, evidence
Tom pre-clinical studies in animals and isolated
cells demonstrates effects of torcetrapib on rais-
ing BP and acting as an adrenal secretagogue that
are clearly dissociated from inhibition of CETP. |
Data from phase I and II clinical studies with
other CETP inhibitors (e.g., anacetrapib, dalce- |
Loy e © g | _ »

...... tonsaihh) A ~notaadt 1 121
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Huge apparent improvements in efficiency
and quality in many research inputs:

¢ Approximate Moore’s Law improvements in many cases

¢ Qualitative improvements in other cases

Figure 2 | How can some parts of the R&D process improve, yet the
overall efficiency decline? Dramatic improvements in brute force
screening methods and basic science should have tended to increase the
efficiency of the research process (more leads tested against more tar-
gets, at a lower cost; shown in gold) and raised its quality (better targets
as disease pathways and mechanisms are understood, better leads that
avoid old mistakes surrounding ADMET (absorption, distribution, metab-
olism, excretion and toxicity) characteristics, and so on). This, in turn,

Eroom’s Law:
increase in cost per
approved molecule

Small changes in success of
molecules entering clinical
trials over the past 50 years

should have increased the probability that molecules would succeed in
the clinic (shown in red), which in turn should have increased overall
efficiency, as research and development (R&D) costs are dominated by
the cost of failure. However, the probability that a small molecule
successfully completes clinical trials has remained more or less constant
for 50 years?!, whereas overall R&D efficiency has declined?*. One pos-
sible explanation for this is that much of the industry industrialized and
‘optimized’ the wrong set of R&D activities.

There have been several interesting
critiques of modern research*****, but here
we highlight two potential problems. First,
much of the pharmaceutical industry’s R&D
is now based on the idea that high-affinity
binding to a single biological target linked
to a disease will lead to medical benefit
in humans®. However, if the causal link
between single targets and disease states is
weaker than commonly thought®***, or if
drugs rarelv act on a single target, one can

The ‘basic research-brute force’ bias. The
‘basic research-brute force’ bias is the ten-
dency to overestimate the ability of advances
in basic research (particularly in molecular
biology) and brute force screening methods
(embodied in the first few steps of the
standard discovery and preclinical research
process) to increase the probability that a
molecule will be safe and effective in clinical
trials (-1, V.. We suspect that this has been

the intellectiial haaie tnr 3 mave awav fram

peiivus.
Indeed, drug-like small molecules tend
to bind promiscuously, and this sometimes
turns out to have an important role in their
efficacy*™*” as well as their so-called off-
target effects®. Targets are parts of complex
networks leading to unpredictable effects™,

and hinlnoical eveteme chaw a hich deoree nf

Scannell JWV, Blanckley A, Boldon H, et al. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev
Drug Discov 2012; 11:191-200



Target-based approaches may not be optimal

51%

Percentage of NMEs

First-in-class drug Follower drug

[ ] Phenotypic Bl Target- [l Modified [ Biologics
screening based natural
screening  substances

Figure 2 | The distribution of new drugs discovered
between 1999 and 2008, according to the discovery
strategy. The graph illustrates the number of new molecular
entities (NMEs) in each category. Phenotypic screening was
the most successful approach for first-in-class drugs,
whereas target-based screening was the most successful for
follower drugs during the period of this analysis. The total
number of medicines that were discovered via phenotypic
assays was similar for first-in-class and follower drugs —

28 and 30, respectively — whereas the total number of
medicines that were discovered via target-based screening
was nearly five times higher for follower drugs versus
first-in-class drugs (83 to 17, respectively).

From Swinney and Anthony. How were
new medicines discovered? Nat Rev Drug

Discov (2011) 10 507-519
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Figure 2.
New drug approvals (dots), represented on the left vertical axis, and pharmaceutical R&D
expenditures (shaded area), represented on the right vertical axis, in the United States from
1963 to 2008. R&D expenditures are presented in terms of constant 2008 dollar value. The
trend line is a 3-year moving average. The source of drug approval data is the Tufts Center for l
the Study of Drug Development (CSDD). The source of R&D expenditure data is the 'l
Pharmaceutical Research and Manufacturers of America; Industry Profile 2009; conversion of
actual expenses to constant dollars was performed by Tufts CSDD.
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Figure 3 | Cumulative distribution of new drugs by discovery strategy. a | First-in-class drugs. A lag is not strongly
apparent in a comparison of the cumulative number of small-molecule new molecular entities (NMEs) that were
discovered from the different approaches during the period analysed. b | Follower drugs. For follower drugs, the ratio

of small-molecule NMEs discovered through target-based screening to those discovered through phenotypic screening
appeare tain~raase in tha cacand half of the time period.




Finding new uses for old drugs

TABLE 1

Examples of approved drug molecules identified using low-throughput screening methods as having effects against diseases other than
the original target®

Molecule Original use New use Method of discovery Refs
Aprepitant Nausea: NK-1 receptor Drug-resistant HIV-1 infection: Initial hypothesis tested with another [99,100]
antagonist downregulates CCR5 in macrophages NK-1 receptor antagonist in vitro
Cryptosporidiosis in Tested in vivo in immunosuppressed [101]
immunosuppressed hosts mice infected with Cryptosporidium
parvum; decreased substance P levels
Amiodarone Class Ill anti-arrhythmic Chagas disease: blocks Literature search [102]
ergosterol biosynthesis
Glybenclamide Antidiabetic Antithrombotic activity in Common pharmacophore with an [103]
mouse models ICso 9.6 pM experimental TP receptor antagonist
$Q29,548
Tamoxifen Antiestrogen Anti-protozoal: Leishmania Focused screening to test hypothesis [104,105]
amazonensis ICso 11.1-16.4 uM and in vivo mice studies
Trimetrexate Antifolate used in Pneumocystis Inhibitor of Trypanosoma cruzi Enzyme activity and antiparasite [106)
carinii infection in patients DHFR ICs 6.6 nM activity assays for one compound
with AIDS
Riluzole Amyotrophic lateral sclerosis: Currently in clinical trials for treating Treatment of GRM1-positive human [107]
inhibits glutamate release melanoma, but might have activity melanoma cells reduced levels of
and reuptake against other cancers released glutamate, suppressed
melanoma cell growth and also
suppressed tumor growth in xenograft
model; induced cell cycle arrest,
leading to apoptosis
Sertraline Antidepressant (selective Neuroprotective, prolongs survival, Previously shown that another [108]

serotonin reuptake inhibitor)

improves motor performance and
ameliorates brain atrophy in the
R6/2 HD model

SSRI was neuroprotective

® Abbreviations: CCR5, chemokine receptor 5; DHFR, dihydrofolate reductase; GRM1, glutamate receptor, metabotropic 1; NK-1, neurokinin-1 receptor; SSRI, selective serotonin reuptake

inhibitors.

Ekins S, Williams AJ, Krasowski MD, et al. In silico repositioning of approved drugs for rare and neglected

diseases. Drug Discov Today 201 I; 16:298-310



TABLE 2

Examples of approved drug molecules identified using HTS or in silico screening methods as having effects against diseases other than

original target®

Molecule Original use New use Method of discovery Refs
Itraconazole Antifungal: lanosterol Inhibition of angiogenesis by In vitro HUVEC proliferation [109]
14a-demethylase inhibitor inhibiting human lanosterol screen against FDA-approved
14a-demethylase; 1C5o 160 nM drugs (JHCCL)
Astemizole Non-sedating antihistamine Antimalarial 1Cso 227 nM against In vitro screen for P. falciparum [110]
(removed from US market Plasmodium falciparum 3D7 growth of 1937 FDA-approved
by FDA in 1999) drugs (JHCCL)
Mycophenolic acid Immunosuppressive Inhibition of angiogenesis by In vitro HUVEC proliferation [111]
drug: inhibits guanine targeting type 1 inosine screen of 2450 FDA- and
nucleotide biosynthesis monophosphate dehydrogenase; foreign-approved drugs (JHCCL)
ICso 99.2 NM
Entacapone and tolcapone Parkinson’s Disease: Antitubercular: entacapone inhibits Used a chemical systems biology (77
catechol-O-methyltransferase  InhA; IC5, 80 pM approach
inhibitors
Nitazoxanide Infections caused by Giardia  Antitubercular: multiple potential Screens against replicating and [112]
and Cryptosporidium spp. targets non-replicating Mtb
(+)-2-amino-3- Human metabolite, Antimalarial: inhibits HSP-90; ICsq HTS screening of 4000 compounds [113]
phosphonopropionic acid mGIuR agonist 0.06 uM against P. falciparum 3D7
Acrisorcin Antifungal Antimalarial: inhibits HSP-90; ICsq HTS screening of 4000 compounds [113]
0.05 M against P. falciparum 3D7
Harmine Anticancer Antimalarial: inhibits HSP-90; I1Cs, HTS screening of 4000 compounds [113]
0.05 uM against P. falciparum 3D7
Acetophenazine, fluphenazine Antipsychotics-D2 Human androgen receptor Docking of known drugs into [96]

and periciazine

and 5-HT; inhibitors

antagonists acetophenazine
(K; 0.8 uM), fluphenazine(K;
0.8 uM), periciazine (K; 3.0 uM)

androgen receptor followed by
in vitro screening

Levofloxacin, gatifloxacin,
sarafloxacin, moxifloxacin
and gemifloxacin

Bithional, bortezomib,
cantharidin, chromomycin A3,
duanorubicin, digitoxin,
ectinascidin 743, emetine,
fluorosalen, manidipine HCI,
narasin, lestaurtinib, ouabain,
sorafenib tosylate,
sunitinib malate, tioconazole,

tribromsalen, triclabendazolum

and zafirlukast

DNA gyrase

Various

Active against ATCC17978; inactive
against BAA-1605 MIC <0.03-0.04
(mg/l)

NF-«B inhibitors; ICso 0.02-39.8 uM

Screening of 1040 drugs from
microsource drugs library versus
Acinetobacter baumannii

Screening of NCGC pharmaceutical
collection of 2816 small molecules
in vitro

[114]

[115]
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Ekins S, Williams AJ, Krasowski MD, et al. In silico repositioning of approved drugs for rare and neglected
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What is Systems Biology!?

Cartesian rationalism, the essence of reductionism:

Aristotle (Metaphysics, book 8, 10453, 8-10) “The whole is something
|. Analysis Break down complex problem in simpler problems over and above its parts, and not just the sum of them all.”
2. Solve simpler, partial problems were solved
3. Synthesis allows the comprehension and resolution of the initial Jan Smuts coined the term holism to refer to this principle, according to
complex problems as a result of the combination of the partial results.

which the comprehension of systems as a whole is irreducible.
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Ursus Wehrli Tidying Up Art 2003

http:/Iwww.ted.com/talks/ursus_wehrli_tidies_up_art.html

Keit Haring, Untitled 1986
|

Omics produce partlists -

Time

Fig. 2 The growing gap between the amount of available scientific
data and the actual new knowledge generated from these data. Axis X

time; axis Y relative accumulated quantity of scientific data (green),
information (reddish) and knowledge (blue).

From Medina MA. Systems biology for molecular life sciences and its impact in biomedicine. Cell Mol Life Sci 2012;70:103
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hierarchical
structure

System

network of interconnected and
mutually dependent components

that constitute a unified whole structure maintained

through interrelationship
between its components

dynamic, thermodynamically
open system

gene
RNA

protein .
drug/ligand ™ =

disease
patient
process

heterogeneous/bipartite

physical
function
semantic
regulation
logical
metabolic

Complex Networks

homogeneous

‘ao 4 av VoL wluciBlanding vi d UIVIUg -
ical system can be derived from insight into  sc
four key properties: ¢

1) System es. These include the net-  d
work of gene interactions and biochemical h
pathways, as well as the mechanisms by which ¢
such interactions modulate the physical proper-
ties of intracellular and multicellular structures.

2) System dynamics. How a system be-
haves over time under various conditions can
be understood through metabolic analysis,
sensitivity analysis, dynamic analysis meth-
ods such as phase portrait and bifurcation
analysis, and by identifying essential mecha-
nisms underlying specific behaviors. Bifurca-
tion analysis traces time-varying change(s) in
the state of the system in a multidimensional
space where each dimension represents a par-
ticular concentration of the biochemical fac-
tor involved.

3)_The control method. Mechanisms that
systematically control the state of the cell can
be modulated to minimize malfunctions and
provide potential therapeutic targets for treat-
ment of disease.

4: The desisﬂ method. Strategies to mod-
ify and construct biological systems having  n¢
desired properties can be devised based on  nec
definite design principles and simulations, ne
instead of blind trial-and-error.
PR——

Kitano H. Systems biology: a brief
overview. Science 2002;295:1662
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Drug repositioning strategies

large-scale computational approach that
simulates three-dimensional binding between
existing drugs and target proteins to predict
novel drug-target interactions

678 protein s 4707 crystal found 13156
targets structures binding pockets
4854 small dock 3570
molecule »| known target-drug
drugs interactions

y

establish a reliable-
for-docking set of
252 targets
(2923 pockets)

.

Figure 3. Network of known protein-drug interactions. Proteins
are shown as rectangular boxes (nodes), drugs are shown as pink
(approved) and blue (experimental) circles, and edges represent known
interactions annotated by DrugBank. Edges colored red denote known
interactions that were docked with a good icm-score. Here we show
only the 252 proteins for which at least one known drug docked well -
the ‘reliable-for-docking’ set. The proteins at the bottom of the graph
are not connected to other proteins through shared binding drugs.
doi:10.1371/journal.pcbi.1002139.g003

dock reliable
targets to all drugs

apply consensus score
and rank thresholds
to get top predictions

—

manually examine the

top predictions as potential
repositioning candidates

LiY,An ], Jones S.A Computational Approach

Figure 1. The computational molecular-docking pipeline.
doi:10.1371/journal.pcbi.1002139.g001

to Finding Novel Targets for Existing Drugs.
PLoS Computational Biology 7:e1002139



Here we generate a large-scale disease-disease, drug-drug and
disease-drug network by directly matching their molecular profiles;
in particular, their transcriptomic profiles thanks to the accumu-
lation of whole-genome gene expression data available in the
public domain. The main assumption of our approach is that gene
expression profiles of many (but not all) diseases and drugs can
characterize to some extent the effects of disease and drugs;
therefore, these diseases and drugs can be related based on the
similarity/dissimilarity of their induced expression profiles. This
assumption, though not without caveats and limitations, has been
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Hu G, Agarwal P. Human disease-drug

Figure 2. Disease-drug network. This disease-drug network contains a total of 49 diseases in dark cyan nodes, 213 drugs in gold, and 906 netWOI"I( based on genomic eXP r'ession
connections. The size of the nodes is proportional to the number of links. Positive matches are shown by solid lines and negative relationships by
dotted lines. Multiple nodes with the same descriptive name exist because the corresponding profiles were generated under different conditions or P rofiles. PLoS ONE 2009’ 4:e6536



ure Ammerica, Inc. Al rngnis reservea.

GWAS catalog
(Feb. 14, 2011)
796 publications

4,818 rows

=Not replicated GWAS
"P>1e-7
= Anthropometric traits

GWAS selected
361 publications
1,515 rows
1,099 GWAS genes

Genes not matching PR
HUGO names w
155 GWAS genes

991 GWAS genes benmmmsmsmmmdl  With a drug
l project GWAS trait

not an
indication for
17 genes

GWAS trait matches i GWAS trait different
drug indication for 63 @l from drug indication
genes for 92 genes

Pharmaprojects
Preclinical to marketed

Active projects
1,089 genes

l

=212 genes druggable by
small molecules

*469 genes biopharmable

T

Better confidence in

Potential new indication

disease indication for the for the drug

drug

Figure 1 Analysis pipeline. Nine hundred ninety-one GWAS-associated genes were selected from

the GWAS catalog after two filtering steps (Supplementary Methods). These genes were evaluated as

potential drug targets for small molecules and biopharmaceuticals. One hundred fifty-five of these 991

genes were also targeted by drugs currently in pharmaceutical pipelines, as listed on the Pharmaprojects

database, which has a total of 1,089 genes targeted by pipeline drugs. A total of 63 individual genes

mapped to 52 different GWAS traits and drugs with the same or closely related indication to the GWAS

traits (considered as matches). Conversely, 92 individual genes map to 51 GWAS traits and drugs with

indications different from the GWAS traits (considered mismatches or potential drug-repositioning Sanseau P Agarwal P, Barnes MR, et al.
opportunities). Some genes are in both lists as they have multiple GWAS phenotypes that resulted in | jo of genome-wide association studies

both a match to an existing indication and also a potentially novel indication. for drug repositioning. Nat Biotechnol

2012;30:317-320
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Figure 3. Predict drugs’ repositioning potential for hypertension via DRoSEf. a) The distribution of the ® score for the positive (red) and
negative (blue) set for hypertension. The molecules with high ® score in negative set (red square bracket) were chosen as the candidates for treating
hypertension. b) The ROC curve of using ® score to predict hypertension. The AUC is 0.74. c) Predicted relationships of the top molecules with the 12
SEs and the association of these SEs with the hypertension. The binary association among molecules and SEs is in grey lines. The association strength
between SE and disease is reflected in the color and the width of the edge. Postural hypotension is highlighted as the SE explicitly linked to
hypertension.

Drug repositioning helps fully explore indications for marketed drugs and clinical candidates. Here we show that the clinical
side-effects (SEs) provide a human phenotypic profile for the drug, and this profile can suggest additional disease
indications. We extracted 3,175 SE-disease relationships by combining the SE-drug relationships from drug labels and the
drug-disease relationships from PharmGKB. Many relationships provide explicit repositioning hypotheses, such as drugs
causmg hypoglycemla are potentlal candldates for dlabetes We bunlt Nauve Bayes models to predlct |nd|cat|ons for 145

Yang L,Agarwal P. Systematic drug
repositioning based on clinical side-
effects. PLoS ONE 201 |; 6:e28025



Modeling blex systems through networks

l
1. INTRODUCTION :
etworks have become a pervasive abstraction with

which many different types of complex system are mod- _ _ _ _
eled [1]. They provide an intuitive way of defining a Gorochowski et al. Evolving dynamical networks: A formalism

set of components or agents and the interactions that take for describing complex systems. Complexity (2012) 17 3 18-25

place between them; the main ingredients of any complex
system. Examples range from cell populations communicat-
ing via quorum sensing in biology [2] to power grids and the

Drug Discovery Today * Volume 00, Number 00+ May 2012
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Clean drugs or dirty drugs!

selective drug (clean drug)

promiscuous (dirty) drug




Not a bug but a feature

drug network - ‘' - . . Polypharmacology: Drugs are not specific,
e they target more than one entity.
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Fig. 3 Different components of the drug-target network. (A) Drug space (marked with the outer box) consists of the small-molecules which can
potentially bind entities with-in the cell (marked as drug targets in red spheres). In turn cellular interactions between different components (marked
with red spheres and green circles) form cellular interactome comprising the target space. (B) Target space comprises of different components
namely protein-protein interactions, metabolic pathways and transcriptional circuits which together form the biological network or the cellular
interactome.

From Janga and Tzakos. Structure and organization of drug-target networks: insights
from genomic approaches for drug discovery. Mol Biosyst (2009) 5 1536—1548



(a) Orthosteric drugs (b) Allosteric drugs (c) Allo-network drugs
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TRENDS in Pharmacological Sciences

Figure 2. Comparison of orthosteric, allosteric and allo-network drugs. Here, in all cases the effect of the drug on the target site is via an allosteric propagation. Intra-protein
propagation of drug-induced conformational changes is represented by dark green arrows. Conformational changes propagating through multiple proteins are marked
with light green arrows. Drug binding sites are depicted by green circles; target sites are highlighted by red asterisks. (a) Orthosteric drugs. Here the inhibition (or activation,
illustrated by light red ellipsoids at the bottom row) is via an allosteric effect which is elicited by active site (orthosteric) binding and propagates to a target site (dark-green
arrow). Because protein families often share similar binding pockets, orthosteric drugs can bind to multiple proteins (named here ‘isoform 1’ and ‘isoform 2’), which can
lead to side effects. (b) Allosteric drugs. Drug binding is in an allosteric site. Allosteric drugs are more specific than orthosteric drugs, because they usually do not bind to
isoforms of the target. (c) Allo-network drugs. Here, drug binding is at an allosteric site; however, the target site is on a different protein in the cellular network. The pathway
of allo-network drug-induced conformational changes (marked by light green arrows) may be highly specific and (or) specifically enhance (inhibit) an intracellular pathway
of propagating conformational changes (marked by orange arrows) at the target site. In promising allo-network drugs these intracellular pathways are disease-specific.

From Nussinov R, Tsai C-J, Csermely P.Allo-network drugs: harnessing allostery in cellular networks. Trends Pharmacol Sci 201 |; 32:686—693



Can domains be drug targets!
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numero de veces que aparece dD

|(dD) es la informacion asociada a que aparezca dD

1(dD)=-log:P(d,D) probabilidad de que d y D

aparezcan asociados

P(d.D) = p(d) - p(D) = (nd/5d) - (ND/5D)

nd y nD son el nUmero de veces que aparece cada d y cada D respectivamente



for each dD

—_— L =3P compute score for dD

shuffle protein list get random dD network

{random scorej,..,random scoreas | t-test.

dD score average random score stdev p-val Null hypothesis: score

belongs to random
scores distribution
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Drug-target bipartite networks.

oo, Drugs are colored in red, and targets
(proteins in dP networks or domains in dD
networks) are colored in blue. A and C are the

t.i & _ . CATH and PFAM dD networks, respectively. B

D :.f"_"f: and D are the dP subnetworks containing the
T PSOANES same drugs as A and C, respectively.
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drugs targets pairs degree degree

dDPFAM 535 223 2846 .85 12.76
dDCATH 44| 175 2829 .96 16.17
dP subnet PFAM 1535 2236 6562 4.27 2.93

dP subnet CATH 1441 2309 6673 463 2.89

dP 5531 3580 12754 2.30 3.56




drug-drug projections

CATH coverage
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dD CATH dP CATH dD PFAM dP PFAM

Heterogeneity 0.61 0.89 0.46 0.84
Cluster coefficient 0.96 0.83 0.97 0.85




Phosphorylase Kinase; domain 1
Phosphotransferase domain 1

Rhopdopsin 7-helix transmembrane proteins
Trypsin-like serine protease

Retinoid X Receptor

Erythroid Transcription Factor GATA-1, subunit A .
Neurotransmitter-gated ion-channel transmembrane pore, Chain B From HOkanS & §room.The druggable genome

2.70.170.10 c \

P-loop containing nucleotide triphosphate hydrolases Nat. Rev. Dl”Ug DISCV. (2002) | 727-730.
Voltage-gated potassium channels. Chain C
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Drug degree distributions in the dD (filled bars) and dP (empty bars) bipartite networks. PFAM, upper panel. CATH, lower panel.
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